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Abstract
We investigate the elliptic system of equations, which is general-covariant and
locally SU(2)-covariant. For this system, we obtain the new condition of the
Dirichlet problem solvability and the condition of the absence of zeroes for the
solutions. This system contains, in particular, the Sen–Witten equation. On this
basis, we prove the existence of the wide class of hypersurfaces, in all points
of which there exists a correspondence between the Sen–Witten spinor field
and three-frames, as well as preferred lapses and shifts. The Nester special
orthonormal frame also exists on a certain subclass containing not just the
maximal hypersurfaces.

PACS numbers: 02.30.Jr, 04.20.Ex, 04.62.+v

1. Introduction

The necessity of investigating submanifolds, on which the solutions of elliptic equations are
equal to zero, is connected with the fact that the necessary and sufficient conditions for the
absence of such closed submanifolds of codimension one are simultaneously the necessary
and sufficient conditions for uniqueness of the Dirichlet problem for these equations in the
domain. Since the elliptic equations refer to the static solutions of the given hyperbolic field
equations, the non-uniqueness of the solution for the boundary value problem defines the non-
stability of ‘zero modes’ of given field equations. Additionally it appears to be necessary to
study not only the closed submanifolds and not only of codimension one, but all other ones, on
which zeros of solutions are located. This is related, in particular, to the Sen–Witten equation
(SWE), for which the question about the existence of zeros has been discussed for a long time
[1–4]. The absence of zeros for SWE solutions has been proven for the case when the initial
data set for the Einstein equations on the maximal hypersurface is asymptotically flat, and the
local mass condition is fulfilled [5]. Since on a maximal hypersurface the system of equations
splits into separate equations, the choice of the Cauchy surface as maximal enables us to use
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the known results of investigations of zeros for single equations. We can also ascertain that,
in each point of the maximal hypersurface, there exists a two-to-one correspondence between
the Sen–Witten spinor and the Nester special orthonormal frame (SOF).

In this paper, we aim to develop a new approach for establishing the conditions of
solvability and zeros absence for general, from the physical point of view, elliptic systems
of equations. It will be possible to prove the existence of the wide class of hypersurfaces,
in all points of which there exists the two-to-one correspondence between the Sen–Witten
spinor and a certain three-frame, which we call the Sen–Witten orthonormal frame (SWOF).
In all points on such hypersurfaces there are also well-defined lapses and shifts, associated by
Ashteckar and Horowitz [1] with the Sen–Witten spinor. On a subclass of this class, including
also the maximal hypersurfaces, we establish the existence of a two-to-one correspondence
between the Sen–Witten spinor and the Nester three-frame.

2. Preliminaries

Firstly, we introduce three definitions.

Definition 1. The knot point of the component of the solution is a point, in which the component
is equal zero.

Definition 2. The knot point of the solution for the elliptical system of equations is a point, in
which the solution is equal to zero.

From the general theory of elliptic differential equations, it is known that nontrivial
solutions cannot vanish on an open subdomain, but they can turn to zero on subsets of lower
dimensions k, k = 0, 1, . . . , n − 1, where n is the dimension of the domain.

Definition 3. The knot submanifold of dimension s, s = 1, 2, . . . , n − 1, is a maximal
connected subset1 of dimension s consisting of knot points of the solution.

A discrete set of knot points is zero-submanifold. In section 3 we show that, for the
system of differential equations in which we are interested, all knot subsets are formed by the
intersection of knot surfaces of the components of the solution.

The connection between the unique solvability for the boundary value problem in Rn

and the absence of (n − 1)-dimensional closed knot submanifolds was established by Picone
[6, 7]. The existence of such a connection follows from the next consideration: if the boundary
value problem in a certain domain � is uniquely solvable, then the boundary value problem
is also uniquely solvable for any subdomain �1 ⊆ �. This excludes the possibility of the
existence of nontrivial solutions which become zero on the boundary of the arbitrary domain
�1, i.e. it excludes the possibility of the existence of closed knot submanifolds of codimension
one, and vice versa.

The known investigations of the elliptical equations of a general form does not allow us
to obtain the conditions for the absence of all knot points. For example, even in the case of the
only single equation of a general form Aronszajn and Cordes proved, we prove the absence of
zeros only of infinite order [8, 9]. This is why we further examine only such general equations,
which possess also the necessary physical properties; in particular, symmetry properties.

Let � be a bounded closed spherical-type domain in three-dimensional Riemannian space
V 3, otherwise: (i) its boundary ∂� in every point has a tangent plane; (ii) for every point P
1 Maximal connected subset A is a nonempty connected subset such that the only connected subset containing A

is A.
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on the boundary there exists a sphere, which belongs to �, and the boundary of the sphere
includes the point P.

In the domain � let us consider the system of elliptic second-order equations

1√−h

∂

∂xα

(√−hhαβ ∂

∂xβ
uA

)
+ CA

BuB = 0 (1)

where hαβ are components of the metric tensor in V 3. These are arbitrary real functions of
independent real variables xα, continuous in �, and the quadratic form hαβξαξβ is negative
definite. The unknown functions uA of independent variables xα are the elements of complex
vector space C2, in which the skew symmetric tensor εAB is defined, and the group SU(2)

acts. CA
B is a Hermitian (1, 1) spinorial tensor.

The system of equation (1) is covariant under the arbitrary transformations of coordinates
in V 3, and covariant under the local SU(2)-transformations of unknown functions in a local
space isomorphic to the complexified tangent space in every point to V 3.

Picone ascertained that, at arbitrary coefficients of elliptic equations, the boundary value
problem is uniquely solvable, and the closed knot submanifolds of codimension one are absent,
respectively, only in the domains with a small enough intrinsic diameter.

The general conditions for the absence of closed knot surfaces for strong elliptic system
(1) are ascertained by theorem 1 [10].

Theorem 1. If in domain � there are symmetrical quadratic functional second-order matrices
B1, B2, B3 of C1 class, such that matrix

√−hC −
3∑

α=1

∂Bα

∂xα
+ BT G−1B

is positive definite, where B = (B1, B2, B3),G = √−h diag(‖hαβ‖, ‖hαβ‖, ‖hαβ‖), then the
solution of the system of equation (1) with matrix C = ∥∥CA

B
∥∥ of C1 class does not have the

closed knot surfaces in domain �.

The effective geometrical conditions of the existence of the B-matrix and the
corresponding unique solvability of the Dirichlet problem in dependence on the domain
intrinsic diameter have been obtained [10] for Euclidean space. Such conditions are important,
for example, in the theory of nuclear reactors. Since we are interested in the conditions of the
absence of knot manifolds for quantum field equations, we further concentrate our attention
on the conditions of the absence of knot points in the domains of arbitrary as well as infinite
intrinsic diameters.

Evidently, if matrix C is positive definite, then the conditions of theorem 1 are fulfilled
for B ≡ 0, and the closed knot surfaces are absent in the domain with an arbitrary intrinsic
diameter. Simultaneously, the boundary value problem for the system of equation (1) is
uniquely solvable.

Theorem 1 does not indicate the conditions at which the knot points, lines as well as all
knot surfaces for the solution of equation (1), are absent. We obtain these in section 3.

3. Conditions for the absence of knot points

In the case of a single self-adjoint elliptic equation in V 3 the knot submanifolds can only be
the surfaces which divide the domain, but in the case of a system of equations the topology of
the knot submanifolds becomes more various; it can also be lines and points. We can take this
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fact into account and ascertain the conditions for the absence of knot manifolds exploiting the
double covariance of the system of equation (1) and using the Zaremba–Giraud lemma, first
generalized by Keldysh and Lavrentiev [11] and later by Oleynik [12].

Let us introduce the matrix

R := ∥∥RA′ B
∥∥ :=

(
α β

−β α

)
αα + ββ = 1

which is of the group SU(2), and let its elements additionally satisfy the condition

C0
1β2 +

(
C0

0 − C1
1
)
αβ − C0

1α2 = 0.

Therefore

C0′ 1
′ = R0′ ACA

BR1′
B = 0

and in accordance with the Hermiticity of matrix C also C0′ 1
′ = C1′ 0

′
. Then C0 := C0′ 0

′

and C1 := C1′ 1
′

are eigenvalues of matrix C = ∥∥CA
B
∥∥. This follows from the fact that, for

arbitrary matrix R ∈ SU(2), the identity

−εRε ≡ RT +

is valid, where ε = ‖εAB‖. Therefore

C ′ = −εRεCRT + = RT +CRT = diag(C0, C1).

Let us denote

� := C1
1 − C0

0 −
[(

C1
1 − C0

0
)2

+ 4
∣∣C0

1
∣∣2

]1/2

and let us denote by S a set of points in domain �, in all points of which C0
1 does not equal

zero. Also, let us denote by T a set of points, in which C0
1 is equal to zero. Then the

elements of the matrix R, which transforms the matrix C to diagonal form, satisfies on set S
the conditions

αα
(

1 + �2/4
∣∣C0

1
∣∣2

)
= 1 β = α�/2C0

1

and on set T the conditions

αα = 1 β = 0.

Functions u0′ and u1′ on set S are as follows

u0′ = α

(
u0 +

�

2C0
1
u1

)
u1′ = α

(
− �

2C0
1
u0 + u1

)
(2)

and on set T these are

u0′ = αu0 u1′ = αu1. (3)

Respectively, eigenvalue C0 on S is

C0 = 4C0
0
∣∣C0

1
∣∣4

+
(
4�

∣∣C0
1
∣∣2

+ C1
1�2

)(
4
∣∣C0

1
∣∣2

+ �2
)

4
∣∣C0

1
∣∣2 (

4
∣∣C0

1
∣∣2

+ �2
)

and coincides with C0
0 on set T.

Lemma 1. If real and imaginary parts of functions uA and of elements of matrix CA
B are

functions of class C2 in the domain �, then the real and imaginary parts of functions uA′

defined by conditions (2)–(3) are also the functions of class C2 in this domain.
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Proof. Taking into account that it is always possible to choose Im α ∈ C2(�), from direct
calculation we obtain that on set S there are first and second derivatives of real and imaginary
parts of functions uA′ and α with respect to arguments

(
�2

/
4
∣∣C0

1
∣∣2)

and
(
�

/
2
∣∣C0

1
∣∣2)

. Also

lim
P�S→Q∈T

Re α(m)(P ) = Re α(m)(Q) lim
P�S→Q∈T

Im α(m)(P ) = Im α(m)(Q)

lim
P�S→Q∈T

Re u
(m)

A′ (P ) = Re u
(m)

A′ (Q) lim
P�S→Q∈T

Im u
(m)

A′ (P ) = Im u
(m)

A′ (Q)

where symbol f (m) denotes the arbitrary partial derivatives of order m = 0, 1, 2. �

The following theorem is valid.

Theorem 2. Let

(a) real and imaginary parts of the elements of matrix C be of C2 class in the domain �;
(b) at least one eigenvalue of matrix C, for definiteness C0, is non-negative everywhere in �;
(c) real or imaginary parts of the function

v :=


(
u0 +

�

2C0
1
u1

)∣∣∣∣
S

⋂
∂�

u0|T ⋂
∂�

do not equal zero in any point.
Then solution uA of class C2 for the system of equation (1) does not have any knot points
in the domain � of spherical type.

Proof. The system of equations (1) is covariant under the arbitrary transformations of
coordinates and under the local transformations from the group SU(2) that allows us to
use them independently. As a first step, let us apply the SU(2) spinor transformation
uA → RA′ BuB , which transforms the matrix C to a diagonal form, and under which equation
(1) is covariant.

The eigenvalues of matrix C are real, therefore the resulting system of equations (1) splits
into a system of four independent equations for real and imaginary parts of spinor uA′ . Taking
into account that uA′ , C0 and C1 are scalars under transformations of coordinates, and C0 � 0,
we can apply the Zaremba–Giraud principle in the general form grounded by Oleynik [12]
to every equation containing C0. According to this principle, if in a certain point P0 on the
sphere the nonconstant function in the ball turns to zero, and everywhere in the ball Re u0′ < 0,
then 〈d Re u0′, l〉|P0

< 0. Here l is the arbitrary vector field, for which 〈n, l〉|P0
> 0, and n is the

intrinsic one-form normal to the sphere in the point P0.
Let us show further that a set of knot points for function Re u0′ does not contain the isolated

points. Let us assume that such a point exists, i.e. Re u0′ = 0, and in a certain neighbourhood
of the point P0 the function has a constant sign. For definiteness, in this neighbourhood
let u0′ < 0. Let us consider a sphere, on which the point P lies, and it is so small that it
completely belongs to the mentioned neighbourhood of the point P. Then, using the Zaremba–
Giraud principle, we obtain 〈d Re u0′, n〉|P0> 0. Therefore, in any neighbourhood of the point
P0, located outside the ball, the function Re u0′ changes its sign; this is why its zeros are not
isolated. Therefore, they form the surfaces which divide �. Since C0 � 0, then it follows
from the maximum principle that the closed knot surfaces for the components of solution
Re u0′ are absent. The analogous conclusion is true also for the component of solution Im u0′ .
This means that the only surfaces having common points with the boundary of domain � can
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be the knot surfaces of real or imaginary parts of function u0′ . According to condition (c), if,
for definiteness,

Re

(
u0 +

�

2C0
1
u1

)∣∣∣∣
S

⋂
∂�

�= 0 Re u0|T ⋂
∂� �= 0

then we can choose

Re α|S ⋂
∂� �=

{[
Re

(
u0 +

�

2C0
1
u1

)]−1

Im α Im

(
u0 +

�

2C0
1
u1

)}∣∣∣∣∣
S

⋂
∂�

Re α|T ⋂
∂� �= [(Re u0)

−1 Im α Im u0]|T ⋂
∂�

and we obtain[
Re α Re

(
u0 +

�

2C0
1
u1

)
− Im α Im

(
u0 +

�

2C0
1
u1

)] ∣∣∣∣
S

⋂
∂�

≡ Re u0′ |S ⋂
∂� �= 0

(Re α Re u0 − Im α Im u0) |T ⋂
∂� ≡ Re u0′ |T ⋂

∂� �= 0.

Therefore, knot surfaces as well as lines and points of the real (or imaginary) parts are
absent. This is why any knot points of the complete solution uA are also absent. The statement
of the theorem is proven. �

Note that, if the conditions (a) and (b) of the theorem are fulfilled, and if the matrix C is
non-negative definite in domain �, then both eigenvalues are non-negative and, therefore, the
boundary value problem for the system of equations (1) is uniquely solvable in the arbitrary
bounded domain, as it follows from the classical maximum principle. Otherwise, the solution
in the finite domain exists only when its intrinsic diameter does not overcome a certain value.

4. The conditions of the absence of knot points for the solutions of the SWE

After Witten’s positive energy proof, the attempts to develop the tensor method for the proof
were performed in two ways. Firstly, there were attempts to interpret the tensor for the Sen–
Witten spinor field. In particular, Ashteckar and Horowitz [1] used the Sen–Witten spinor field
to determine a class of preferred lapses T := λ and shifts T a := −√

2iλ+(AλB). Dimakis and
Müller-Hoissen [2, 3] defined a preferred class of orthonormal frame fields in which the spinor
field takes a certain standard form. Frauendiener [13] noticed a correspondence between the
Sen–Witten spinor field and a triad. But, as shown by Dimakis and Müller-Hoissen, frame
fields cannot exist in the knot points of the spinor field.

Among the works performed in the second way, the most developed is Nester’s method
which is grounded on the new gauge conditions for the SOF

∗ q := εabcωabc = 0 q̃b := ωa
ba = Fb (4)

where ωabc are the connection one-form coefficients and F is arbitrary everywhere on the 
t

defined exact one-form.
An essential part of Witten’s proof of non-negativity for ADM mass is the application of

the SWE

DB
CβC = 0 (5)

with appropriate asymptotic conditions on the space-like hypersurface 
 in four-dimensional
Riemannian manifold M = 
 × R with each 
t = 
 × {t} space-like. The initial data set
(
t, hµν,Kπρ) satisfies the constraints, and is asymptotically flat. An action of the operator
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DAB on spinor fields is

DABλC = DABλC +

√
2

2
KABC

DλD

where DAB is the spinorial form of the derivative operator Dα compatible with the metric hµν

on the C∞ hypersurface 
t , and KABCD is the spinorial tensor of the extrinsic curvature of
hypersurface 
t .

The existence and uniqueness theorem for the solution of equation (5) in corresponding
Hilbert space with some asymptotic conditions was proven by Reula [14] (see also [1]).

Let us ascertain the conditions of the absence of zeros for these solutions on 
t using
the results of section 3. From equation (5), taking into account the equation of Hamiltonian
constraint on 
t , in Gaussian normal coordinates we obtain [5]

DA
BDBCλC = 1

2
√−h

∂

∂xα

(√−hhαβ ∂

∂xβ
λA

)
−

√
2

2
KDABλB

−
√

2

4
λBDABK +

1

4
K2λA +

1

8
KαβKαβλA +

1

4
µλA = 0. (6)

Therefore, the system of equations (6) is a system of the form (1); if it does not have the knot
points, the SWE also does not have them.

The spinorial tensor

CA
B :=

√
2

4
DA

BK +
1

4
εA

B

(
2K2 +

1

2
KπρKπρ + µ

)
(7)

is Hermitian because
(DA

BK)+ = (εBCDACK)+ = (εBC)+(DACK)+ = −(DACK)εCB =
(DA

BK).
So, the SWE solutions of class C2 do not have the knot points in a bounded closed domain

� of spherical type on 
t , if for the spinorial tensor CA
B in this domain and for the boundary

values of the solution the conditions of theorem 2 are fulfilled.
Furthermore, let us consider a sequence �n of increasing domains of spherical type

covering 
t . If in every domain the conditions of theorem 2 are fulfilled, then none of the
solutions of class C2 have knot points in �n. According to Reula, on 
t there exists the SWE
solution of the λC = λC

∞ + βC form, where λC
∞ is the asymptotically covariant constant spinor

field on 
t . βC is an element of Hilbert space H, which is the Cauchy completion of C∞
0

spinor fields under the norm

‖βE‖2
H =

∫

t

(DA
BβB

)+ (DACβC
)

dV.

The solution λC belongs properly to the C∞ class. From the asymptotic flatness condition
it follows that

(
�2

/(
4
∣∣C0

1
∣∣2)

, as well as real and imaginary parts of functions
(
�

/
2C0

1
)

and(
�

/
2C0

1
)
, vanish asymptotically. Therefore, condition (c) from theorem 2 asymptotically

takes the form, Re λ0
∞ �= 0 or Im λ0

∞ �= 0. In such a way we obtain the following theorem.

Theorem 3. Let

(a) initial data set be asymptotically flat;
(b) everywhere on 
t the matrix of the spinorial tensor (7) has at least one non-negative

eigenvalue, for definiteness C0;
(c) Re λ0

∞ or Im λ0
∞ asymptotically nowhere equal to zero.

Then the asymptotically constant nontrivial solution λC to the SWE does not have the
knot points on 
t .

The conditions of theorem 3 are fully admissible from the physical point of view.
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5. Towards the SWE: special orthonormal frame and preferred time variables

Usually the question about the existence of a system of coordinates or an orthonormal basis,
which satisfy certain gauge conditions, is reduced to the question about the existence of a
solution for nonlinear system of differential equations. It can often be solved only with some
additional limitations and assumptions [15].

The existence theorem for the SWE (linear) and theorem 3 about zeros (section 4) on
surfaces, which cannot be maximal, allow us to prove the existence of a certain class of
orthonormal three-frame in all points of these hypersurfaces which satisfies gauge conditions

εabcωabc ≡ ∗q = 0 ωa
1a ≡ −q̃1 = F1

(8)
ωa

2a = −q̃2 = F2 ωa
3a = −q̃3 = K + F3

and generalizes Nester’s SOF. We call such a three-frame the SWOF.

Theorem 4. Let the conditions of theorem 3 be fulfilled. Then everywhere on 
t there exists
a two-to-one correspondence between the Sen–Witten spinor and the SWOF.

Proof. In reality, let all conditions of theorem 3 be fulfilled on 
t . Then the SWE solution λA

does not have knot points anywhere on 
t . This allows us to prove on such 
t the Sommers
[16] assumption that the spatial null one-form L = −λAλB on 
t is nonzero. It allows us to
turn everywhere on 
t to the ‘squared’ SWE represented in the following form

〈L̃,D ⊗ L〉 − KL + 3!i ∗ (n ∧ D ∧ L) = 0 (9)

where 〈L̃,D ⊗ L〉 is the one-form with components L̃νDµLν, L̃ = |L|−1 ∗ (L ∧ L) is the
nonzero spatial one-form, and n is the one-form of a unit normal to 
t .

The bilinear form
1√
2
nAȦλAλȦ = λAλA+ ≡ λ

where n is the one-form of a unit normal to 
t , is Hermitian positive definite, and the solution
λA does not have knot points on 
t . Consequently, we can further introduce the real nowhere
degenerated orthonormal four-coframe θm as

θ0 ≡ n = N dt θ1 =
√

2

2λ
(L + L) θ2 =

√
2

2λi
(L − L) θ3 = L̃ (10)

and represent immediately equation (9) in the form

−〈θ1,D ⊗ θ3〉 − Kθ1 + 3! ∗ [n ∧ (D + F) ∧ ∧θ2] = 0 (11)

〈θ2,D ⊗ θ3〉 + Kθ3 + 3! ∗ [n ∧ (D + F) ∧ θ1] = 0 (12)

where F = D ln λ. The system of equations (11) and (12) includes only four independent
equations, and these are equations (8) for the connection one-form coefficients. From this, it
follows that, if on 
t the conditions of theorem 3 and the SWE are fulfilled, then on 
t there
exists the three-frame θa defined by equations (10) in which conditions (8) are fulfilled.

Inversely, if on 
t in some three-frame θa the conditions of theorem 3 and conditions
(8) are fulfilled, then it follows from the condition of theorem 3 that these one-forms have a
form θa = θa

∞ + φa , where θa
∞ tend asymptotically to the covariant constant forms and φa

belongs to H. We can turn from four-frame θm ≡ {n, θa} to one-forms θ0, L, L̃, assuming
λA|
t

�= 0. After this, we obtain equation (9) and furthermore (5)2 for the spinor field λA,
2 The equivalence of the SWE (5) and of the equation (6) is proven by Reula [14].
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which, as we have demonstrated previously, indeed does not have knot points on selected
hypersurface 
t and which, together with asymptotical conditions, defines up to sign the
spinor field λA. Mentioned in the conditions of the theorem, the correspondence between the
Sen–Witten spinor field and Nester’s SOF is defined by the relationship (10). �

We have proven [5] that if the initial set (
t , hµν,Kπρ) on the maximal hypersurface3 
t

is asymptotically flat and satisfies the dominant energy condition, then everywhere on 
t from
the existence of the Sen–Witten spinor field follows the existence of Nester’s three-frame.
Conversely theorem 3 allows us to strengthen significantly this result by taking away the
assumption that 
t is maximal. Indeed, if all the conditions of theorem 3 are fulfilled on

t , and additionally the one-form KL̃ is globally exact, we can perform in these conditions
the identification F ≡ d ln λ + Kθ3 and obtain the Nester’s gauge (4), or we can perform
the inverse transition, i.e. from Nester’s gauge to SWE. Therefore, if on 
t the conditions
of theorem 3 are fulfilled, then the SWE and Nester’s gauge are equivalent if and only if the
one-form Kλ+(AλB) is exact. In this case the correspondence between the Sen–Witten spinor
and Nester’s SOF is also ascertained by relationship (10).

Ashteckar and Horowitz [1] have emphasized the necessity of investigating zeros for
SWE solutions, introducing the vector interpretation of the Sen–Witten spinor, which defines
a preferred lapse and shift. Evidently, the fulfilment of the conditions of theorem 3 ensures
the existence of corresponding lapses and shifts well defined everywhere on 
t . Also, the
preferred class of orthonormal four-frame fields introduced by Dimakis and Müller-Hoissen
exists in all points of 
t under the fulfilment of the conditions of theorem 3.

6. Conclusions

The presence of zeros in the solutions of elliptic equations is ordinary rather than exceptional.
Therefore, it is necessary to prove the absence of zeros for concrete cases.

The represented investigation demonstrates the possibility of obtaining the condition of
the absence of knot manifolds for a general enough system of elliptic second-order equations
owing to its double covariance.

The application of this result to the SWE allows us to prove the equivalence of the SWE
and gauge conditions (8) and, respectively, the existence of an everywhere well-defined two-
to-one correspondence between the Sen–Witten spinor field and the SWOF, which is the Nester
SOF in the particular case when one of the one-forms Kθa is exact. Therefore, the indicated
correspondence exists not only on the unique—maximal—hypersurface, but on the whole set
of asymptotically flat hypersurfaces.

Ashteckar and Horowitz [1] have shown that the Reula results hold even if the energy
condition is mildly violated. Also, the conclusion about the existence of special three-frames
and four-frames, as well as preferred lapses and shifts, is stable under the violation of the
energy condition because, as seen from equation (7), there exist hypersurfaces on which this
condition of the absence of knot points is fulfilled with the violation of the energy condition.
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